
Abstraction Relationships for Real-Time Speci�cations

Monica Brockmeyer

Computer Science Department

Wayne State University

Detroit, MI 48202

mab@cs.wayne.edu

Abstract

This paper introduces the use of abstraction

relationships for timed automata. Abstrac-

tion relations make it possible to determine

when one speci�cation implements another,

i.e. when they have the same set of com-

putations. The approach taken here permits

the hiding of internal events and takes into

account the timed behavior of the speci�ca-

tion. A new representation of the semantics

of a speci�cation is introduced. This repre-

sentation, min-max automata is more com-

pact than other types of �nite state automata

typically used to represent real-time systems,

and can be used to de�ne a variety of abstrac-

tion relationships.

1 Introduction

This paper describes the use of min-max au-

tomata to specify the behavior of real-time

systems compactly. Originally developed [2]

as an alternative representation of timed be-

havior for the Modechart language[12], in

order to support the evaluation of abstrac-

tion relationships between Modechart spec-

i�cations, min-max automata are a general

construct for representing the behavior of

timed systems. Min-max automata are a

more general form of automata than the

computation graphs originally developed for

Modechart[27], but are more compact than

other types of automata which represent the

passage of each unit of time as a distinct edge.

Thus, min-max automata are more suitable

for model-checking and automated evalua-

tion of abstraction relationships between au-

tomata.

Abstraction and re�nement relationships

permit the evaluation of whether one speci-

�cation can replace another. When can one

speci�cation replace another? What does it

mean for two speci�cations to have the same

behavior or for one speci�cation to have more

general behavior? Abstraction permits the

substitution of module with a simpler im-

plementation for one that is more complex.

In abstraction, modules can be simpli�ed by

hiding internal details or by simplifying tim-

ing constraints.

There are several important uses for ab-

straction relations. This work was primar-

ily motivated by the desire to ameliorate the

state-space explosion problem which arises in

mechanical model-checking. If one speci�-

cation is an abstraction of another (i.e. it

has more general behavior), then all behav-

iors of original are behaviors of the abstrac-

tion. Therefore, it may be advantageous

to mechanically verify the abstraction rather

than the original speci�cation, should it have

a more compact representation. Frequently,

abstractions are created in an ad hoc man-

ner in order to perform model checking. This

research provides a formal basis for creating

and using abstractions for real-time speci�ca-

tions.

Two other scenarios for using abstraction

relations merit discussion. First, abstractions

may be applied as part of a \top-down" de-

velopment procedure. First, a very general

speci�cation of a real-time system may be

de�ned. Then, a series of re�nements may

add increasing detail, resulting in speci�ca-

tions which are more operational. If this se-

quence of re�nements is designed while main-

taining an abstraction relation at each step,

then properties which have been veri�ed at

In particular, for real-time systems, the

process of re�nement might include the spec-

i�cation of tighter and tighter timing bounds

as assumptions about the environment of a

system are re�ned. the previous step will hold

for each re�nement step.

The last scenario involves showing an ab-

straction relationship between two speci�ca-

tions where one represents an implementation

and the other represents the properties which

must hold. In this case, instead of performing

model-checking, one shows that a property,

described as a speci�cation, holds for the im-

plementation.

Because of the timed behavior of Mod-

echart speci�cation, it is not possible to use

the standard notion of program equivalence

used to relate untimed concurrent programs

[23]. The usual approach relies on the repre-

sentation of the system as a labeled transition

system. The original behavior representation

of a Modechart speci�cation [27], a compu-

tation graph, is a type of labeled transition

system which captures the untimed behavior

of a Modechart speci�cation. Timing infor-

mation is described in associated separation

graphs. As a consequence it is not possible

to de�ne abstraction relationships directly for

computation graphs.

The approach taken here is to represent all

timing constraints explicitly in the labeled

transition system. Then, the simulation re-

lationships described in the literature can be

directly applied. A new type of labeled tran-

sition system, min-max timed automata, are

introduced. Each edge in the automata rep-

resents either the passage of time or a dis-

crete system event which takes no time. Min-

max automata represent elapsed time with

time-passage edges which specify the mini-

mum and maximum amount of time which

can elapse between two discrete events.

The rest of this paper is organized as fol-

lows: Section 2 introduces both discrete-

timed automata and min-max automata.

Section 3 describes the extensions to the

usual de�nitions for a move in an automata

necessary to de�ne abstraction and simula-

tion relationships. Section 4 de�nes bisim-

ulation and trace inclusion relationships for

min-max automata. Conclusions and future

work are found in Section 5.

2 De�nition of Min-Max

Automata

This research is motivated by two goals.

First is the ability to mechanically evaluate

abstraction relationships between automata

representing timed systems. Second is achiev-

ing a compact representation of timed sys-

tems. These goals are achieved by the use of

min-max automata in which each time pas-

sage edge denotes a range of possible times

elapsed. This results in a more compact rep-

resentation than other approaches because

multiple paths can be collapsed into one.

However, because each path in the min-

max automata can potentially represent more

than one timed execution of a system, the

usual notions of bisimulation and abstraction

relations cannot be directly applied.

De�nition 2.1. A min-max automata, A is

de�ned as the tuple

< states(A); initial(A); actions(A); next(A)>

where

� The initial states, initial(A) �

states(A),

� The actions of A, actions(A), is the

union of the the sets external(A) and

f�g and times(A) = f(min;max) :

min;max 2 fZ+
[1g and min � maxg

where � is called the internal action and

times(A) are time-passage actions, and

� The next-state relation, next(A) is a

subset of states(A)�actions�states(A).

Min-max automata, like discrete timed au-

tomata, are examples of Lynch's [22] untimed

automata. And like discrete-timed automata,

the time-passage actions can be used to assign

occurrence times to external events in a trace

to form a computation.

� is distinguished as the internal action of

A. It is considered to be invisible outside of

A. If � is a sequence of actions in actions(A),

then �̂ is the same sequence with all � actions

removed, and �� is the sequence with the time

actions (elements of times(A)) removed.

If (s; a; s0) � next(A), then the notation

s
a

�! s0 may be used to indicate this. If there

is a sequence, � for which there are states

s0; s1; s2; : : : sn, such that for all i, si
�i
�! si+1,

� is called a �nite execution fragment of A,

and one can write s0
�

�! sn. For an in�-

nite sequence, the notation s0
�

�! is used. A

move of A, indicated by s

=) s0, occurs if

s
�

�! s0 and = �̂. Thus, a move ignores

internal actions.

If s0 is an initial state of A, then � is an

execution of A. The sets, execs�(A); execs!;

and execs(A) indicate the sets of �nite, in�-

nite, and executions of A. If the time pas-

sage actions are removed, (��), the result-

ing sets are the untimed �nite, untimed in-

�nite, and untimed executions of A, de-

noted execs�
U
(A); execs!

U
; and execsU(A). If

the internal action is removed from an ex-

ecution of A, = �̂, the resulting se-

quence is called a trace of A. The sets of

traces of A are traces�(A); traces!(A), and

traces(A) for the �nite, in�nite, and all traces

of A. The corresponding untimed traces,

traces�
U
(A); traces!

U
(A), and tracesU(A) are

also de�ned, for the corresponding �.

The actions in the set external(A) repre-

sent the discrete, externally visible actions of

the system. In the context of Modechart,

these could represent mode entry, mode exit,

and mode transition events which are visi-

ble on the interface of a Modechart module.

The symbol � is used to represent internal

events which can not be observed externally.

Both external(A) and � events occur instan-

taneously. The set external(A)[f�g is called

discrete(A).

The time passage actions represent the

passage of an amount of time between the

values of min and max. When they oc-

cur in an execution, they represent time

elapsing between the instantaneous exter-

nal and � events. The values of a time-

passage edge, e, are indicated by min(e) and

max(e). A timed event sequence is a se-

quence � = d0; d1; d2; : : : with di = (ai; ti) 2

discrete(A) � Z+ and ti increasing. If the

timed event sequence corresponds to some ex-

ecution � of A such that for every di 2 �, if

ai = �k then ti �
P

0�j<k
�j2times(a)

min(�j) and

ti �
P

0�j<k
�j2times(a)

max(�j) if maxj 6= 1 for

all j. If maxj = 1 for any j, then only the

lower bound restriction holds. then � is called

a timed execution of A. It can be observed

that � assigns times to the discrete events in

� in a way that is consistent with the time

passage events in �. If the timed event se-

quence corresponds to a trace of A it is called

a timed computation. comps(A) indicates the

set of timed computations of A.

3 Issues in De�ning Ab-

straction Relations for

Min-Max Automata

Direct application of the de�nitions for ab-

straction relations described in the litera-

ture is problematic, since each path through

a min-max automata represents more than

one (timed) computation. As a consequence,

soundness and completeness results which

hold for the ordinary de�nitions of abstrac-

tion relationships (e.g. bisimulation) will

hold for traces of min-max automata, but not

necessarily for computations.

Moreover, time-passage edges have some

properties which cause unexpected results

when the ordinary abstraction relations are

applied directly using the usual de�nition of

a move. The de�nition of a move is relaxed,

leading to more powerful abstraction rela-

tions.

Example 3.1. Consider the min-max au-

tomata P and Q, depicted in Figure 1.

P Q

2

1

0
(3,5)

3

2

1

0

4

(1,2)

(2,3)

a

τa

Figure 1: Complications in matching time

passage edges in a min-max automata

The ordinary de�nition of a move will not

permit the sequence 0 �!P 1; 1 �!P 2, to

be matched to 0 =) 4 in Q, for any of the

abstraction relations described. Yet, the two

systems describe the same set of timed com-

putations and have very similar structure.

It should be possible to extend the def-

inition of a move to permit a single time-

passage edge to be matched with an appro-

priate sequence of time-passage edges in the

abstraction such that a time passage edge on

(m;n) could be matched by a sequence of

time passage edges whose minimums sum to

m and whose maximums sum to n. How-

ever, the de�nitions of abstraction relation-

ships described in the literature match a sin-

gle edge to a move. That is, if a min-max

automata has an edge with action (1; 2) fol-

lowed by (2; 3), while it can be said that the

automata moves on (3; 5), what move should

each of (1; 2) and (3; 5) be matched to in the

abstraction automata?

Other approaches (discrete-timed

automata[3] and [22] for example) ad-

dress this problem by �lling in all the

possible time passage edges. In this case,

if there were an edge (3; 5) in a min-max

automata between points s and s0, then there

would have to be every possible sequence of

edges between s and s0 such that the sum of

the minimum times was 3 and the sum of

the maximum times was 5. However, this

defeats the purpose of min-max automata

which is to provide a �nite and more compact

representation of a system, by using min-max

time passage edges.

Instead, the problem is addressed by de�n-

ing a canonical representation for a sys-

tem. The canonical representation combines

all sequences of time-passage edges and re-

places them with new edges corresponding

to a move. In the example, the sequence

(1; 2); (2; 3) would be replaced by a single

time-passage edge (3; 5). The abstraction re-

lations are then de�ned on the canonical rep-

resentation. A canonical representation of a

min-max automata, A, denoted can(A), is de-

�ned by computing the closure of a min-max

automata with regard to the time-passage

edges and deleting all but the maximal length

edges.

A consequence of computing the canoni-

cal representation of a min-max automata is

that some points are left unreachable. Since

the canonical representation represents the

same set of timed computations as the orig-

inal min-max automata, this is of no conse-

quence. However, the de�nitions of the simu-

lation relationships must be adjusted to take

this into account. The unreachable points are

not required to be included in the simulation

relations.

De�nition 3.1. A point s in a min-max au-

tomata is reachable if there is a sequence �

such that s0
�

�! s, where s0 is an initial point

of the automata. The set of reachable points

of an automata A is denoted reachable(A).

The abstraction relations will be de�ned al-

most identically as in the literature. However,

only reachable points will be included and the

canonical representation of the min-max au-

tomata will be used. This will address the

anomaly from Example 3.1.

A second issue is described in Example 3.2.

2

1

0
(3,5)

a

P Q

2

1

0
(1,10)

a

Figure 2: Rationale for a relaxed-time move

in a min-max automata

Example 3.2. Consider min-max automata

P and Q, depicted in Figure 2.

Then comps(P) � comps(Q), but there is

no abstraction relationship between P and

Q. If the individual computations were rep-

resented on separate paths as they are for

discrete-timed automata, then an abstraction

relation would exist.

This problem is avoided by extending the

de�nition of a move, to permit time-passage

edges to be matched to time-passage edges

which are inclusive of the times represented

by the original edge. That is, a time-passage

edge (m;n) will be matched to a time-passage

edge (m0; n0) if m0
� m and n � n0.

First, a time-relaxed step, relaxes the tim-

ing requirements of a time-passage edge.

De�nition 3.2. If s
(m;n)
�! s0, and m0

� m

and n � n0, then s
(m0

;n
0)

7! s0

Next, the de�nition of a move is expanded

to accommodate time-relaxed steps.

De�nition 3.3. A time-relaxed move of A,

indicated by s0

; sn, occurs if = �̂ where

� is a sequence of states, s0; s1; s2; : : : sn, such

that for all i, si
�i
�! si+1 or si

�i
7! si+1.

By substituting time-relaxed moves for or-

dinary moves in the de�nitions of the abstrac-

tion relations, the anomaly described in Ex-

ample 3.2 is avoided. It is now possible to

de�ne abstraction relations for min-max au-

tomata.

4 Abstraction Relations

for Min-Max Automata

This paper now considers the issues of when

one speci�cation is an abstraction (or imple-

ments) another speci�cation. Trace inclusion

or trace equivalence has been widely used

to describe when one system implements an-

other [21, 22]. The terms simulation [21],

homomorphism [18], and re�nement mapping

[1] have all been used to reduce the problem

of showing trace inclusion to proving some-

thing about transitions in some kind of au-

tomata. Thus, only a local property needs to

be demonstrated. All of these techniques re-

late systems in terms of the timed behavior

of visible events. In each case, the behavior

of internal events is hidden. This section de-

scribes several such relationships in the con-

text of discrete-timed automata.

4.1 Bisimulation and Forward

Simulation

One common technique for showing that

two systems are observationally equivalent

is called bisimulation [25]. Bisimulation in-

volves �nding a relation on the states of two

systems such that two states being bisimi-

lar means that each state has an edge to a

state so that the resulting states are bisim-

ilar. This approach can be relaxed (called

weak bisimulation) so that an edge in each

system is matched by a move (including in-

ternal events) so that the resulting states are

bisimilar. Bisimulation is a rather conser-

vative notion of system equivalence, as it is

sound but not complete, but it is widely used

especially in process algebras [24].

In order to hide internal events, a sequence

of steps, or a move is more relevant to the

question of whether two automata similarly.

A move, as de�ned above, is a subpath be-

tween two points where no intervening events

are externally visible. A weak bisimulation

[25] relaxes the requirement that the two sys-

tems proceed in lockstep. Rather, it is only

necessary that an edge between two points

correspond to a move between two points.

De�nition 4.1. For min-max automata,

P and Q, r � reachable(can(P))�

reachable(can(Q)), is a weak bisimula-

tion, if

� for all p 2 initial(P), there is some q,

such that (p; q) 2 r and q 2 initial(Q),

� for all q 2 initial(Q), there is some p,

such that (p; q) 2 r and p 2 initial(P),

� if 8(p; q) 2 r :

{ if p
e

�! p0 then 9q0 : q
e

; q0 and

(p0; q0) 2 r, and

{ if q
e

�! q0 then 9p0 : p
e

; p0 and

(p0; q0) 2 r.

Informally, this states that two points are

bisimilar if any edge from one of the points

can be matched by the other point making a

move on the same event and reaching a point

that is weakly bisimilar to the point reached

from the �rst point. Since weak bisimulations

are closed under union, it can be shown that

there is a largest weak bisimulation, denoted

�, for any pair of computation graphs for a

given set of observable events.

The following theorem establishes the

soundness of bisimulation.

De�nition 4.2. The notation comps(P) �

comps(Q) indicates comps(P) � comps(Q)

and comps(Q) � comps(P).

Theorem 4.1. P � Q =) comps(P) �

comps(Q):

Proof. Similar to the proof for ordinary timed

automata found in the literature [22]. The

proof is in [2], which shows that the exten-

sions to the de�nition of a move do not violate

the conditions of the usual proof.

Bisimulation is not complete. That is,

there are systems which have the same set

of timed traces, but which are not bisimilar.

This is because bisimulation captures some

aspects of system structure. Each point must

be bisimilar to a point in the other system

which permits actions which move to points

which are bisimilar to those which can oc-

cur in the original speci�cation. As a con-

sequence, bisimulation distinguishes with re-

gard to the state of the system as well as the

sequence of actions or events.

4.2 Forward Simulations

If the de�nition of bisimulation is modi�ed to

apply in only one direction, the result is called

a forward simulation [21]. Forward simula-

tions are also related to simulations [28, 13],

history measures [17], downward simulations

[9, 11, 15], and possibilities mappings [20].

Because the restriction is in one direction,

a forward simulation shows trace inclusion

rather than trace equivalence.

In practice, this approach is desirable. Of-

ten a general purpose speci�cation will be de-

signed as well as an implementation or oper-

ational speci�cation which has a narrower set

of behaviors. It is not necessary for the im-

plementation to have the full set of behaviors

as the speci�cations. Alternatively, perhaps a

simpli�cation can be made to a speci�cation

which reduces the size of the computation

graph, but which admits a larger set of be-

haviors. If the a trace inclusion relationship

holds between the two systems, then it may

be possible to model-check the simpler system

and apply the results to the more complicated

system.

De�nition 4.3. For min-max automata,

forward simulation from P to Q is a

relation f over reachable(can(P)) and

reachable(can(Q)) a forward simulation if:

� for all p 2 initial(P), there is some q,

such that (p; q) 2 f and q 2 initial(Q),

� if 8(p; q) 2 f and all e 2 actions(P),

p
e

�! p0 then 9q0 : q
e

; q0 and (p0; q0) 2

f .

Lynch [21] shows that forward simula-

tions are a pre-order (i.e. they are reexive

and transitive). Soundness follows from the

soundness of bisimulations.

4.3 Forward-Backward Simula-

tions

Forward-Backward simulations were also de-

scribed by Lynch and are similar to the in-

variants and ND-measures of [16, 17] as well

as subset simulations [14], and simple failure

simulations [7]. They are less restrictive than

forward simulations. Perhaps, most notewor-

thy is that they are complete for trace inclu-

sion. However, since a single trace of a min-

max automata can represent more than one

timed computation, forward-backward simu-

lations are not complete for timed computa-

tions.

De�nition 4.4. For min-max automata,

forward-backward simulation from P to Q

is a relation fb over reachable(can(A)) and

N(reachable(can(B))) 1 such that:

� for all p 2 initial(P), there is some

set A, such that (p;A) 2 fb and A �

initial(Q),

� if p
e

�! p0 and (p;A) 2 fb, then there

exists a set A0 such that (p0; A0) 2 fb

such that for every q0 2 A0 there is some

q 2 A such that q
e

; q0.

P Q

a

(3,3)

a

(3,5)

a

(4,5)

Figure 3: Completeness Problem for Min-

Max Automata

Example 4.1. To understand why forward-

backward simulations are not complete for

min-max automata, consider min-max au-

tomata, P and Q, depicted in Figure 3.

1For a set X,N(X) indicates the set of non-empty

subsets of X.

Then, comps(P) � comps(Q) but it is not

the case that P �FB Q, because there is no

match for the time-passage edge, (3; 5).

Therefore, further research is required to

�nd an abstraction relation which is complete

for computations of min-max automata.

4.4 Homomorphisms and Re-

�nements

Homomorphisms [8, 18] and re�nement map-

pings [1, 19, 21], are more restrictive than

forward simulations, because they require a

function from states(P) to states(Q) rather

than a relation.

De�nition 4.5. For min-max au-

tomata, P and Q, a function f between

reachable(can(P)) and reachable(can(Q)),

is a re�nement if:

� for all p 2 initial(P), f(p) 2 initial(Q),

� if for all e 2 actions(P) p
e

�! p0 then

f(p)
e

; f(p0)

The proof of soundness for forward simula-

tions, forward-backward simulations, and re-

�nements is similar to that for bisimulations.

Another interesting type of relationship be-

tween two automata is failures inclusion or

equivalence, developed by Hoare [4, 10]. An

alternative characterization, given by Hen-

nessy and de Nicola [6], is called testing

equivalence in which equivalent automata

pass or fail the same set of tests. Testing and

failures relationships cannot be characterized

by matching an edge in one automata with

some kind of move in another automata and

so are not discussed in this paper.

5 Conclusions and Future

Work

This paper has introduced min-max au-

tomata which are a compact form of timed

automata suitable for mechanical evaluation

of simulation and abstraction relationships.

Extensions to the de�nition of a move nec-

essary to support simulation and abstraction

relationships were de�ned and several types

of equivalence and abstraction/simulation re-

lationships were described in the context of

min-max automata. Related research e�orts

extend these ideas by describing automatic

generation of abstractions [2].

Future work involves integration of min-

max automata into existing software tools

to automatically generate min-max automata

for Modechart speci�cations and to automat-

ically check for the simulation and abstrac-

tion relationships de�ned in this paper. The

Modechart Toolset [5, 26] provides a graphi-

cal interface for editing, consistency-checking,

simulation, and veri�cation of real-time spec-

i�cations in the Modechart Language. This

will permit evaluation of the techniques on

real-world examples. Future work is also re-

quired to de�ne an abstraction relationship

which is complete for trace inclusion of min-

max automata.

References

[1] M. Abadi and L. Lamport. The exis-

tence of re�nement mappings. Theoret-

ical Computer Science, 82(2):253{281,

1991.

[2] M. Brockmeyer. Monitoring, Testing,

and Abstractions of Real-Time Speci�-

cations. PhD thesis, The Department

of Electrical Engineering and Computer

Science, The University of Michigan,

1999.

[3] M. Brockmeyer. Using modechart mod-

ules for testing formal speci�cations.

In Proceedings of the High Assurance

Systems Engineering Workshop. IEEE,

1999.

[4] S. D. Brookes, C. A. R. Hoare, and A.W.

Roscoe. A theory of communicating se-

quential processes. Journal of ACM,

pages 560{599, 1984.

[5] P. C. Clements, C. L. Heitmeyer, B. G.

Labaw, and A. T. Rose. MT: A toolset

for specifying and analyzing real-time

systems. In Proc. IEEE Real-Time Sys-

tems Symposium, December 1993.

[6] R. de Nicola and M. C. Hennessy. Test-

ing equivalences for processes. Journal

of Theoretical Computer Science, pages

83{133, 1983.

[7] R. Gerth. Foundations of composi-

tional program re�nement. In Proceed-

ings REX Workshop on stepwise re�ne-

ment in distributed systems: Models,

Formalism, Correctness, Lecture Notes

in Computer Science, volume 430, pages

777{808, 1987.

[8] A. Ginzburg. Algebraic Theory of Au-

tomata. Academic Press, 1968.

[9] J. He. Process simulation and re�nment.

Journal of Formal Aspects of Computing

Science, 1:229{241, 1989.

[10] C. A. R. Hoare. Communicating Sequen-

tial Processes. Prentice-Hall, Englewood

Cli�s, NJ, 1985.

[11] C. A. R. Hoare, J. He, and J. W.

Sanders. Prespeci�cation in data re�ne-

ment. Information Processing Letters,

25:71{76, 1987.

[12] F. Jahanian and A. K. Mok. Mod-

echart: A speci�cation language for real-

time systems. IEEE Trans. Software En-

gineering, 20(10), 1994.

[13] B. Jonsson. Compositional Veri�cation

of Distributed Systems. PhD thesis, Up-

saala University, 1987.

[14] B. Jonsson. Simulations between speci-

�cations of distributed systems. In Pro-

ceedings Concur '91, Lecture Notes in

Computer Science, volume 527, pages

347{360. Springer-Verlag, 1991.

[15] M. B. Josephs. A state-based approach

to distributed processing. Distributed

Computing, 3:9{18, 1988.

[16] N. Klarlund and F. Schneider. Verifying

safety properties using in�nite state au-

tomata. Technical Report 89-1039, De-

partment of Computer Science, Cornell

University, 1987.

[17] N. Klarlund and F. Schneider. Prov-

ing non-deterministically speci�ed

safety properties using progress mea-

sures. Information and Computation,

171(1):151{170, November 1993.

[18] R.P. Kurshan. Computer-Aided Veri�-

cation of Coordinating Processes: The

Automata-theoretic Approach. Princton

University Press, 1994.

[19] L. Lamport. Specifying concurrent

program modules. ACM Transactions

on Programming Languages, 5:190{222,

1983.

[20] N. Lynch. Multivalued possibilities map-

pings. In Proceedings REX Workshop on

stepwise re�nement in distributed sys-

tems: Models, Formalism, Correctness,

Lecture Notes in Computer Science, vol-

ume 430, pages 519{543, 1987.

[21] N. Lynch and F. Vaandrager. Forward

and backward simulations { part i: Un-

timed systems. Information and Compu-

tation, 121(2):214{233, September 1995.

[22] N. Lynch and F. Vaandrager. For-

ward and backward simulations { part

ii: Timing-based systems. Information

and Computation, 128(1):1{25, 1996.

[23] Z. Manna and A. Pnueli. The Temporal

Logic of Reactive and Concurrent Sys-

tems. Springer-Verlag, 1992.

[24] R. Milner. Communication and Concur-

rency. Prentice-Hall, 1989.

[25] D. Park. Concurrency and automata

on in�nite sequences. Lecture Notes in

Computer Science, 104, 1980.

[26] A. Rose, M. Perez, and P. Clements.

Modechart toolset user's guide. Tech-

nical Report NRL/MRL/5540-94-7427,

Center for Computer High Assurance

Systems, Naval Research Laboratory,

Washington, D.C., February 1994.

[27] D. Stuart. Implementing a veri�er for

real-time systems. In Real-Time Systems

Symposium, pages 62{71, Orlando, FL,

December 1990.

[28] R. J. van Glabbeek. Comparative Con-

currency Semantics and Re�nement of

Actions. PhD thesis, Free University,

The Netherlands, 1990.

